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Engel groups

Notation: left-normed simple commutators

[a1,a2,a3,...,a/] =[...[[a1, 32], &3], - . -, ar].

Recall: a group G is an Engel group if for every x,g € G,

[x.8,8,....8] =1,
where g is repeated sufficiently many times depending on x and g.

Clearly, any locally nilpotent group is an Engel group.
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Known facts on finite groups

Zorn's Theorem
A finite Engel group is nilpotent.

Proof:
Coprime action = non-Engel.

No coprime action = nilpotent. ]

Baer's Theorem

If g is an Engel element of a finite group G,
that is, [x,g,...,g| =1 for every x € G, then g € F(G).

Here, F(G) is the Fitting subgroup, largest normal nilpotent
subgroup.
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Engel compact groups

J. Wilson and E. Zelmanov, 1992

Any Engel profinite group is locally nilpotent.

Proof relies on

Zelmanov's Theorem

If a Lie algebra L satisfies a nontrivial identity and is generated by
d elements such that each commutator in these generators is
ad-nilpotent, then L is nilpotent.

Yu. Medvedev, 2003
Any Engel compact (Hausdorff) group is locally nilpotent.
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Almost Engel groups

Definition
A group G is almost Engel if for every g € G there is a finite set

&(g) such that for every x € G,

[x.g,8,...,8] € &(g)  forall n> n(x,g).

n

Includes Engel groups: when &(g) = {1} for all g € G.

Theorem 1 (almost Engel = almost locally nilpotent)

Suppose that G is an almost Engel compact (Hausdorff) group.
Then G has a finite normal subgroup N such that G/N is locally
nilpotent.

(...there is also a locally nilpotent subgroup of finite index:
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Three parts of the proof

1. Finite groups, a quantitative version.

2. Profinite groups: using finite groups, Wilson—Zelmanov
theorem.

3. Compact groups: reduction to profinite case
using structure theorems for compact groups.
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If G is an almost Engel group, then for every g € G there is a
unique minimal finite set &(g) with the property that for every
x € G,

[X,g,g,...,g]ég(g) fOfa”n}n(x,g)
=

n

(for possibly larger numbers n(x, g)).

We fix the symbols &(g) for these minimal sets, call them Engel sinks.

The nilpotent residual of a group G is
Yoo(G) = () 7i(6),

where 7;(G) are terms of the lower central series
(71(6) = G, and 7i11(G) = [7i(6), G]).



Almost Engel finite groups

For finite groups there must be a quantitative analogue of the
hypothesis that the sinks &(g) are finite.

Suppose that G is a finite group and there is a positive integer m

such that |&(g)| < m for every g € G. Then |75(G)| is bounded
in terms of m.

(G also has a nilpotent normal subgroup of bounded index:
C6(720(G)).)
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About the proof for finite groups

In any almost Engel group G, the Engel sink is the set
&g)={z2cGlz=[z¢g,....8]}

(with at least one occurrence of g).

Indeed, x — [x, g] is a mapping of &(g) into itself,

must be “onto” since &(g) is finite and minimal,

OJ

z € &(g) belongs to its orbit.

In a finite group, if A is an abelian section, acted on by g of
coprime order, then [A, gl = {[a,g,...,&] | a € A} for any number
of g,

so [A g] € £(g).
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About the proof for finite groups

If|&(g)| < mfor all g € G, then G/F(G) is of m-bounded
exponent.

Proof: Clearly, g centralizes its powers. Hence for any z € &(g*)
we have

z=[z,g",....g" = z8=125¢"...,¢"
Therefore &(g¥) is g-invariant.

Choose k = m!. Then g™ centralizes &(g™),
hence &(g™) = {1} in fact, so g™ is an Engel element.

By Baer's theorem, then g™ € F(G), so G/F(G) has exponent
dividing m!. O
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Further proof for finite groups

Proposition
If ¥ |&(g)| < m, then |G/F(G)| is m-bounded.

First for the case of soluble G.

Then considering the generalized Fitting subgroup = socle of
G/S(G) (using CFSG)......

Proof of Theorem 2 (that |y (G)| is m-bounded)

is by induction on |G/F(G)...

Evgeny Khukhro Almost Engel compact groups



Profinite groups

Recall:

Inverse limits of finite groups.

Topological groups. Quotients only by closed subgroups.
Open subgroups have finite index and are also closed.

Sylow theory. Pronilpotent (=pro-(finite nilpotent)) groups are
Cartesian products of pro-p groups.

Largest normal pronilpotent subgroup (closed).
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A pronilpotent almost Engel group H is in fact an Engel group. \

Proof: For any h € H there is a normal subgroup R such that
&(h)N R = {1} with nilpotent H/R.

Then &(h) C R, so in fact &(h) = {1},

so h is an Engel element. O
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Bounded version for profinite groups

Theorem 2 on finite groups immediately implies the following.

Suppose that G is an almost Engel profinite group and there is a
positive integer m such that |&(g)| < m for every g € G.

Then G has a finite normal subgroup N

of order bounded in terms of m such that G/N is locally nilpotent.
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General case of profinite groups

Suppose that G is an almost Engel profinite group. Then G has a
finite normal subgroup N such that G/N is locally nilpotent.

Cannot simply apply Theorem 2 on finite groups — as there is no
apriori uniform bound on |£(g)|.

First goal: a pronilpotent normal subgroup of finite index.

In the proof, a certain section is considered, and the Baire category
theorem is applied.
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A piece of proof

In an almost Engel profinite group G, the sets

Ee = {x[|€()] < k}

are closed.

Proof: For y ¢ Ex we have |&(y)| > k + 1, so there are
z1,29,...,2k+1 distinct elements, each

zi=zi,y,...,y]. (*)

There is an open normal subgroup N such that the images of the
z; are distinct in the finite quotient G/N.

Then equations (*) show that for every n € N the sink &(yn) has
an element in every coset z;N, whence |&(yn)| > k + 1. So yN is
also contained in G\ Ex. Thus, G\ Ej is open, so Ej is closed. [
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Application of Baire theorem

Recall: Ex = {x | |&(x)| < k} are closed.
In the theorem, G is almost Engel, which means G = E.

By the Baire category theorem, one of Ej contains an open set,
coset al, where U is an open subgroup.

This gives us, in a certain metabelian section, a uniform bound for
|&(u)| for all u € U, and then Theorem 2 on finite groups can be
applied...

Thus, |G/F(G)| is finite, where F(G) is the largest pronilpotent
normal subgroup (which is also locally nilpotent by Lemma above).

Further arguments are by induction on |G/F(G)| and are similar to
those for finite groups.
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Compact groups

Recall

Suppose that G is an almost Engel compact group. Then G has a
finite normal subgroup N such that G/N is locally nilpotent.

Structure theorems for compact groups:

@ The connected component Gy of the identity is a divisible

group (that is, for every g € Gg and every integer k there is
h € Go such that h* = g).

e Gy/Z(Gp) is a Cartesian product of simple compact Lie
groups.

e G/Gp is a profinite group.

Note that a simple compact Lie group is a linear group.
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Gy is abelian

An almost Engel divisible group is an Engel group.

Proof: For g € Gy, let |&(g)| = m. Choose h € Gg such that
h™ = g. Clearly, h centralizes g, so for any z € &(g) we have

z=|z,g,...,8] = zh = [zh,g,...,g].
Hence &(g) is h-invariant. Then h™ = g centralizes &(g). This
means that actually &(g) = {1}, so g is an Engel element. O
By the structure theorem, Gp is divisible, so is Engel by the above.

By well-known results (Garashchuk—Suprunenko, 1960),
linear Engel groups are locally nilpotent.

Hence Z(Gp) = Gy is abelian by the structure theorem.
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Using the profinite case

We apply Theorem 3 on profinite groups to G/Gp.

Thus we have Gy < F < G with Gy abelian divisible, F/Gp finite,
and G/F locally nilpotent.

Next steps:
&(g)N Gy = {1} for all g € G;
[Go,&(g)] =1 for all g € G;

Replace (rename) F by possibly smaller subgroup
(6(g) | g € G)Go,
so Gy < Z(F);

.. etc., in the end use Theorem 3 on profinite again.
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Almost Engel in the sense of rank

Instead of being finite, suppose that &(g) generates a subgroup of
finite (Priifer) rank, for all g € G.

Conjecture:

If G is a compact (or profinite) group, then there is a normal closed
subgroup N of finite rank such that G/N is locally nilpotent.

So far, the case of finite groups has been done:

Theorem 4

Suppose that G is a finite group and there is a positive integer r
such that (&(g)) has rank at most r for every g € G. Then the
rank of ¥o(G) is bounded in terms of r.
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Engel-type subgroups in finite groups and some length

parameters

To measure ‘deviation from being n-Engel":

Definition

En(g) =([x,g,---,8] | x € G).

n

Remark: Note that this is not a subnormal subgroup, unlike the
subgroups

G [Gag] B [[Gag]ag] B
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Soluble groups

Recall: Fitting series: F1(G) = F(G) largest normal nilpotent,
then Fk+1(G)/Fk(G) = F(G/Fk(G))

If G is finite soluble, then the least h such that F4(G) = G is the
Fitting height of G.

If g is an element of a soluble finite group G such that E,(g) (for
some n) has Fitting height k, then g € Fy;1(G).

The proof of Theorem 1 reduces to the following proposition.

Proposition

Let o« be an automorphism of a finite soluble group G such that
G =[G,qa]. Then E,(a) = G for any n.

(Here, E,(«) is a subgroup of G(«).)



Generalized Fitting height

The generalized Fitting series of a finite group G starts from the
generalized Fitting subgroup F;(G) = F*(G), which the product
of the Fitting subgroup and all quasisimple subnormal subgroups,
and by induction F7 ,(G)/F/(G) = F*(G/F}(G)).

The generalized Fitting height h = h*(G) of a finite group G is the
least h such that F;(G) = G.

Theorem 6

If g is an element of a finite group G such that E,(g) (for some n)
has generalized Fitting height k, then g € Ff, m)(G), where m is
the number of prime divisors of |g]|.

(In fact, f(k,m) = ((k+1)m(m+ 1)+ 2)(k + 3)/2.)
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Non-soluble length

The nonsoluble length A(G) of a finite group G is defined as the
minimum number of nonsoluble factors in a normal series each of
whose factors either is soluble or is a direct product of nonabelian
simple groups.

Similarly to the generalized Fitting series, we can define terms of
the ‘upper nonsoluble series’: R;(G) is the maximal normal
subgroup of G that has nonsoluble length ;.

Let m and n be positive integers, and let g be an element of a
finite group G whose order |g| is equal to the product of m primes
counting multiplicities. If the nonsoluble length of E,(g) is equal
to k, then g belongs to Rg(j m)(G).

(In fact, g(k,m) = (k+1)m(m+1)/2.)



Importance of generalized Fitting height and nonsoluble

length

Bounds for the nonsoluble length and/or generalized Fitting height
greatly facilitate using the classification (and are themselves often
obtained by using the classification).

Examples:
@ reduction of the Restricted Burnside Problem to soluble and

nilpotent groups in the Hall-Higman paper;

@ Wilson's reduction of the problem of local finiteness of
periodic profinite groups to pro-p groups;

(Both the Restricted Burnside Problem and the problem of local
finiteness of periodic profinite groups were solved by Zelmanov.)

@ our recent paper of EKh—Shumyatsky on similar problems
about profinite groups.
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About the proofs of nonsoluble results

Theorem 5 on generalized Fitting height follows from Theorem 6
on nonsoluble length and Theorem 4 on soluble groups.

The proof of Theorem 6 depends on the classification of finite
simple group in so far as the validity of the Schreier conjecture on
solubility of the group of outer automorphisms of a finite simple

group.

One of the ingredients are properties of automorphisms of direct
products of nonabelian finite simple groups. A typical lemma:

Let S =51 x --- x S, be a direct product of r isomorphic finite
non-abelian simple groups and let ¢ be the natural automorphism
of S of order r that regularly permutes the S;. Let n be a positive
integer. Then E,(p) = S.

Evgeny Khukhro Almost Engel compact groups



Exact orbits

An important role in the proof is played by results on
permutational actions of certain finite groups G producing exact
(regular) orbits of an element g € G.

Corresponding lemmas rather too technical to be presented here...
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Open problems and conjectures

In the ‘nonsoluble’ theorems the functions depend on the number
of prime divisors of |g|. We conjecture that this dependence can

be eliminated. Moreover, we have quite precise conjectures (with
best-possible bounds):

Let g be an element of a finite group G, and n a positive integer.
If the generalized Fitting height of E,(g) is equal to k, then

g € Fi1(G).

Let g be an element of a finite group G, and n a positive integer.
If the nonsoluble length of E,(g) is equal to k, then g € Ri(G).
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Reduction of conjectures

Let S=5; x --- x S, be a direct product of nonabelian finite
simple groups, and ¢ an automorphism of S transitively permuting
the factors.

Is it true that E,(¢) = S for any n?

Thus, our Lemma above gives an affirmative answer in the special
case where || = r.

Theorem 8

Conjectures 1 and 2 are true if the Question has an affirmative
answer.

Some progress was made for the Question in the case where |¢| is
a prime by Robert Guralnick (unpublished).
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